
Effective Load Balancing in P2P Systems
Zhiyong Xu

Suffolk University
zxu@mcs.suffolk.edu

Laxmi Bhuyan
University of California, Riverside

bhuyan@cs.ucr.edu

Abstract—
In DHT based P2P systems, various issues such as peer het-

erogeneity, network topology, and diverse file popularity, may
affect the DHT system efficiency. In this paper, we propose an
effective load balancing algorithm for DHT-Based P2P systems.
Our main contributions are: (1) we propose an fully distributed
mechanism to maintain the history of file access information.
This information is used to predict the future file access frequen-
cies and support the load distribution and redistribution oper-
ations; (2) we design a novel load balancing algorithm, which
takes the file access history and peer heterogeneity properties
into account to determine the load distribution. Our algorithm
can generate the best load distribution decision when a new peer
comes, it can also be able to dynamically perform the load re-
distribution during system running time if overloaded peers ap-
peared. In our algorithm, no virtual servers are used, thus we
have less processing overhead on the expensive routing meta-
data maintenance; (3) finally, we design a topologically-aware
data replication mechanism, the topological information of the
peers are used for file replication decisions. A file is replicated
only on a peer close to the group of peers which have high ac-
cess frequencies.

I. INTRODUCTION

Peer-to-Peer (P2P) model attracted many attentions from
both industry and academic communities due to its promising
properties such as potential load balancing, self-autonomous or-
ganization and efficient computer resources utilization. Vari-
ous P2P applications appeared [1], [2], [3], [4]. It is commonly
believed that the P2P model have good load balancing perfor-
mance. However, a P2P system faces the following questions:
How to divide the system workload? How to distribute the
workload on the peers? The system performance is highly de-
pended on the answers to these questions. An imbalanced load
will cause long file retrieve latencies and hurt the system overall
performance. Clearly, a well designed load balancing algorithm
is in great need.

Structured P2P systems including CAN [5], Pastry [6], Chord
[7] and Tapestry [8] presented a logically elaborated workload
distribution mechanism. In the ideal situation, peers and files
are evenly allocated, peers have the equal capability and the file
access frequencies are equal as well. Thus, system workload is
evenly distributed on all the peers. System is well balanced and
is able to achieve the optimal performance.

However, such a perfect world is not realistic. In real life,
DHT based P2P systems still have severe load imbalance prob-
lems [9]. In a large-scale DHT system, with the collision free
peerid generating algorithm which generating identifiers ran-
domly, the size difference of the smallest zone and the biggest
zone could be in the order of O(nlogn). Obviously, the peer
who owns a larger zone has to take more duty than the peer with

a smaller one. In addition, computer resources, such as com-
putational power, storage capacity and network bandwidth are
quite different among peers. Saroiu et al conducted a measure-
ment study on Napster and Gnutella [10], they found that the
magnitude of these resources could vary between three and five
order of magnitude across the peers. If a big zone is allocated
to a weak peer (a peer with insufficient resources), even with a
uniform workload distribution, serious load imbalance problem
may occur.

There are many other factors have the great influence on the
system performance as well. For example, the file popularity.
Access frequencies of files may vary in the three orders of mag-
nitude. Chu, et al [11] found that the most popular 10% files
account for almost 60% of overall network traffic. The sizes
of files are also quite different. The length of the smallest file
may contain tens of bytes only, while the biggest file could be
several GB in length. Thus, different amount of computer re-
sources are needed to serve different files. The locations of files
may affect the system performance as well. Fetching a file from
a remote peer consumes much more bandwidth, and result in a
long retrieving latency. Thus, the overlay network topology has
its own effects. Such a skewed file distribution needs to be well
considered in load balancing algorithm design. However, all the
current DHT load balancing algorithms neglect at least one or
more factors and can not guarantee the best performance.

In this paper, we propose a new load balancing algorithm to
solve the above problems. In our solution, file access history in-
formation is collected and stored on each peer. This information
together with peer heterogeneity are used for making load dis-
tribution and redistribution decisions. The size of the zone each
peer owns is dynamic, it can be changed during system running
period. Furthermore, the overlay network topology and file ac-
cess history information are used for file replication decisions.
In summary, our contributions are as follows:

1) We design an efficient, distributed mechanism to collect
the file access history information, this information is
used to predict the future file access trend;

2) We propose a simple and accurate load distribution mech-
anism. When a new peer comes, the workload on the peer
which owns the zone it will join is well divided. The size
of the zone new peer owns is determined by its capacity
and the file access history;

3) We design a low overhead load redistribution mechanism.
As the system keeps running, the size of the zone owned
by a peer may be adjusted to reflect the change of the
workload characteristics;

4) For data replication, we propose a topologically-aware
mechanism. By placing the copies of files on the peer
close to the group of peers which have high possibility to
access the file, our algorithm is able to achieve better load
balancing, reduce bandwidth consumption, and decrease
the user perceived access latency;



5) In our algorithm, no virtual servers are used. We avoid the
induced heavy routing metadata maintenance overhead.

The rest of the paper is organized as follows: In Section II,
we discuss the mechanism of managing the historical file ac-
cess information and usage for file access behavior prediction.
In Section III, we describe the system design, and the detailed
load balancing schemas. We describe the topologically-aware
file replication mechanism in Section IV. The simulation ex-
periments design and performance evaluation are presented in
Section V, and Section VI discusses the related works. Finally,
we conclude the paper in Section VII.

II. FILE ACCESS HISTORY INFORMATION

One drawback existed in almost all the P2P load balanc-
ing algorithms [12], [13], [14] is the negligence of the work-
load characteristic, which is the popularity of files. These al-
gorithms generate the load distribution and redistribution deci-
sions based on the instant load information on peers only. If
a peer is overloaded, some of its virtual servers will migrate
to another light-loaded peer. However, which virtual servers to
be moved are determined by the loads and capacities of both
peers, no file popularity information is used. Thus, system has
no clue about the future user access behaviors on these files,
and in most cases, failed to produce the optimal decision for
the virtual server movements. Even worse, severe virtual server
thrashing (a virtual server migrate back and forth) may occur.

To generate better load balancing decisions, estimate the fu-
ture file access frequencies is essential. An effective future file
access frequency prediction mechanism is in great need. In our
solution, we analyze the file access history information and use
it for future file access estimation. It has been proved that large
amounts of localities exist in web services, and this locality is
the basis for web caching techniques [15], [16], [17], [18]. Chu
et al. [11] found that the file access locality is prevailing in P2P
systems as well. A hot file which has been accessed many times
recently is also likely to be requested by some other peers in the
near future. Thus, keeping the past file access history informa-
tion can help us to predict the future file access tendency.

We use a simple and efficient mechanism to maintain the file
access history information. Like the routing metadata, it is not
possible to keep all file access history information on a single
peer. A fully distributed management strategy is necessary. In
our solution, we borrow the idea used for the routing metadata
management, each peer only maintain a small portion of all his-
tory information, and it is only responsible for maintaining the
access history information of files whose fileids are fallen into
its zone. This information can be used for static load distribution
when a new peer comes, it can also be used for load redistribu-
tion and data replication decisions.

Figure 1 shows a sample file access history information ta-
ble (History Table) stored on the peer with the peerid 121. This
peer owns the zone (117,121] on the name space. Thus, it has to
maintain the access history for files whose fileids are 118, 119,
120 and 121. For each file, a LRU list is created to record the
peers who accessed it recently. The peerid of the peer which
generated the most recent request is stored on the header of
the list. For each entry, the time that access occurred is also
recorded. (Omitted in Figure 1). In this sample, File 118 has
been accessed by the peers 223, 197 and 037 recently, among
these accesses, peer 223 generated the most recent request.

As the P2P system keeps running, the amount of file ac-
cess history information is increasing rapidly. Due to this large
amount of records of file accesses, history table may need more

PeeridsFileid

121

223

172

015 223

197 037118

119

120

Fig. 1. A sample History Table on the peer 121

storage space. Furthermore, the LRU operations on this table re-
quire more system resources and could affect normal tasks. On
the other hand, maintaining file access history for a long time
is not very useful. For a given file, the lifetime access curve is
highly skewed. For example, the scoreboard of a NBA game
is very hot if the game was finished a moment ago, and it can
attract a significant amount of concurrent requests. However, it
will become outdated after one week, and most users will not
access it anymore. Thus, in history table, we only need to keep
each file’s access records for a certain period. All the access
history before that period has no much usage, and should be
removed.

III. LOAD BALANCING MECHANISM

In this section, we describe the detailed load balancing algo-
rithm. The principle of our strategy is to utilize file access his-
tory information to estimate the future file access frequencies.
Our algorithm contains two components: a static load balance
algorithm which is used when a new peer joins, and a load re-
distribution algorithm which can be used when a peer leaves the
system or one peer becomes overloaded.

A. Determine the Best Workload Distribution
First, we create a network model to describe the load

balancing problem in DHT-based P2P systems. Assume
there are N peers in a DHT system, their capacities
are C1, C2, ..., Cn, the zones owned by these peers are
(Zl1, Zh1], (Zl2, Zh2], ..., (ZlN , ZhN ], and the workloads on
these peers are W1, W2, ..., WN , respectively. The system con-
tains M files distributed on these peers, they have the differ-
ent lengths. Thus, they have different access overhead. For
these files, we assume the corresponding access overheads are
O1, O2, ..., OM , and the access frequencies are F1, F2, ..., FM .
Under the ideal situation, system workload should be well dis-
tributed on the peers proportional to their capacities. Thus, for a
peer K, we should have:

WK∑N

i=1
Wi

=
CK∑N

i=1
Ci

(1)

We estimate the workload on a peer K as the sum of ac-
cess frequencies for all the files whose fileids are fallen into
(ZlK , ZhK ] in the past history information recording period.
Assume those files are a1, a2, ... , ae. We have the following
formula:

WK =

ae∑

x=a1

FxOx (2)

and



N∑

i=1

Wi =

M∑

j=1

FjOj (3)

Thus, we have,
∑ae

x=a1
FxOx∑M

j=1
FjOj

=
CK∑N

i=1
Ci

(4)

The above formula shows that to achieve the perfect load bal-
ancing, the ratio of the workload on a given peer to the overall
system workload should be proportional to the ratio of its ca-
pacity to the aggregated capacity of all peers. In such case, the
workload is well distributed on all the peers according to their
capacities.

However, in reality, such a flawless workload distribution is
impossible to produce due to the following reasons: (1) we can
not obtain the accurate file access frequency information; (2) A
DHT based P2P system is fully distributed, no peer can have a
global view of the whole system, and no peer knows all other
peers as well as their workloads. It is hard to calculate the over-
all workload distribution by using the above formula. To keep
the system in the perfect balanced workload distribution will
incur significant overhead; (3) A DHT based P2P system is dy-
namic, the file access behaviors change from time to time. A
perfect workload distribution at a certain time may not be the
best solution at another time.

On the other hand, the ultimate purpose of load balancing is
to achieve the lowest average user perceived file access latency.
It is not necessary to have the perfect load distribution. Accord-
ing to the queuing theory, in case a server is not overloaded,
the average response time increases very slowly as we add more
tasks on it. However, if the server is overloaded, the average
response time will increase drastically only if we keep adding
more tasks.

From the above discussion, we conclude that in DHT sys-
tems, it is not possible and not imperative to achieve the optimal
load balancing in the global level. Our solution aims to provide
the best load balancing property for small regions (each region
contains a small number of peers). We believe if we can guaran-
tee the optimal workload distribution for each small region, we
can preserve relative good load balancing property for the whole
system.

In our load balancing mechanism, we use the history table
to estimate the future file access frequency. The algorithm con-
tains two steps: First, when a new peer comes, we try to achieve
the best static workload distribution assignment as we can; Sec-
ond, during the system running time, we perform the workload
adjustment operation only when it is necessary (say, a peer is
overloaded).

B. Static Load Distribution
When a new peer P comes, the static load distribution algo-

rithm is executed. The objective is to balance the workload on
P and the peer T who owns the zone P will join. The division
of the workload previously taken on T is determined by many
factors, such as the capacities of peers T and P, the estimated
future workload in the zone owned by T, etc.

In traditional DHT systems, when a new peer comes, a unique
identifier (peerid) is assigned. In general, the peer’s unique in-
formation such as IP address or the network adapter card address
can be used as the seed for this generation. This peerid is used
to determine the numerical position on the name space for this
peer. Assume the new coming peer P is given the peerid p, to

c) Our Solution

n1 n2

T

a) Before P Joins

P

P T

n1 n2

n1 n2p

p’

T

b) Standard DHT algorithm

Fig. 2. Sample Peer Join Operation

create the routing structure and other metadata information, P
has to contact a nearby peer and ask it to use the standard DHT
routing algorithm to search the peer who is in charge of the zone
P belongs to. Let’s suppose this peer is T, and the zone it owns is
(n1, n2]. As shown in Figure 2, after the new peer is added, this
zone will be divided into two smaller zones (n1, p] and (p, n2].
Peer P owns the first zone and T owns the second one. Clearly,
no workload character is considered, system divides the zone
based on the peerid p generated by SHA-1 algorithm.

Such a natural and simple zone allocation mechanism does
not perform very well. It can not guarantee that the workload
in the zone previously owned by P is well distributed on these
two peers. After the division, it is very likely that one peer takes
most of the previous workload and another peer does not have
any workload to take at all. Severe load imbalance may occur.
In our solution, we solve this problem. We argue that the pur-
pose of generating the peerid with a collision free algorithm is
to avoid the peerid conflicts and find the zone the peer to join.
For the new peer P, after this zone is found, it is not compulsory
to use p as the peerid. We can choose another position p’ (within
this zone) which can better divide the workload. To implement
this, in our approach, both the historical file access information
and the capabilities of these two peers are used to make the zone
division decision. Figure 2 shows an example. The new peer P
is given the peerid p’, other than the value p. After the join op-
eration finished, P owns the zone (n1, p’] and T owns the zone
(p’,n2].

The peer join algorithm is shown in Figure 3. Assume the ca-
pacities for peers P and T are CP and CT . Before the peer join
operation is executed, for peer T, the fileids which are fallen in
the zone (n1, n2] are a1,a2,...,ae, and the corresponding access
frequencies of these files (obtained from file access history ta-
ble) are Fa1, Fa2, ..., Fae. Thus, the aggregated workload in
(n1, n2] is WT = Fa1 ∗Oa1 + Fa2 ∗ Oa2 + ... + Fae ∗Oae =∑ae

i=a1
FiOi. To well divide WT , we need to find a number u,

such that a1 < u < ae, and we have:

CP

CT

=

∑u

i=a1
FiOi∑a

j=u+1
eFjOj

(5)

After this particular value “u” is found, we can randomly
choose a position p’, such that u < p′ < (u + 1), as the peerid
of the peer P, instead of p.

Since the previous workload WT on T is divided into the new
workloads W ′

P on P, and W ′

T on T. We have the following for-
mulas,

WT = W
′

P + W
′

T (6)

Where,



P is the new coming peer
T is the peer who is in charge of the zone P will join
CP is the capacity of P
CT is the capacity of T
Function PEER JOIN(P)
{

p = SHA-1(P);
T = DHT Routing(p);
Determine the zone (n1, n2] for peer T
Find the access history information for files a1,a2,...,ae
WT =

∑ae

i=a1
FiOi

W ′

P = CP

CP +CT
WT

i = a1
s = 0
while (s < W ′

P )
{

s = s + FiOi

i = i + 1
}
p’= random(fileid(i), fileid(i+1))
Migrate files within (n1,p’] from T to P
Move file access history records in (n1,p’] to P
return(n1,p’,n2);

}

Fig. 3. Static Load Balancing Algorithm

W
′

P =

u∑

i=a1

FiOi (7)

W
′

T =

ae∑

j=u+1

FjOj (8)

Thus,

W ′

P

W ′

T

=
CP

CT

(9)

Then, the previous workload WP is well distributed on peers
P and T. For the file accesses to be happened in the near future,
we cam expect the workload should be able to be well allocated
to these two peers.

Suppose there’s no peer is overloaded before the peer join
operation occurred, no peer will be overloaded after the peer join
operation finishes, because in this operation, we do not add any
additional workloads on any peers except the new peer. Even
for the new peer P, no workload more than its capacity will be
assigned.

Currently, the algorithm is performed on two peers, P and T,
only. We can easily extend our algorithm by using more existing
peers for the static workload distribution. It can achieve better
local load balancing because more peers are involved. However,
it will also bring more computational and file movement over-
heads. In our simulations, we evaluate their effects.

In case of a peer leaves the system, the zone previously allo-
cated to it will be combined with the zone owned by its succes-
sor or predecessor. No further operation is needed. However,
such a strategy may cause load imbalance on that peer in the
future. To relieve this problem, we can divide the files previ-
ously taken on the leaving peer to its adjacent two peers. Each

peer only takes a portion of the leaving peer’s workload. If any
of them get overloaded, the following load redistribution algo-
rithm can be used.

C. Load Redistribution
In the above peer join algorithm, static zone division mech-

anism is used to guarantee the best load division at the time
the new peer joins. However, the file access frequencies al-
ways change from time to time. It is very common that, after
a certain amount of time, a hot file with high access frequency
become very cold and no peers request it any more. In contrast,
an originally cold file may become very hot. Furthermore, in
case a peer leaves the system, its successor who has to take all
its workload may easily become overloaded. If we don’t dy-
namically redistribute the workload during the system running
period, the system performance will be degraded gradually.

On the other hand, the workload redistribution involves future
file access prediction and data movement operations. It may in-
troduce significant amount of overhead. In our algorithm, we
conduct load redistribution process only if it is necessary. That
is, one or two peers get overloaded. This could happen when
a peer leaves the system, and its successor is overloaded or the
change of file access behavior cause a peer overloaded gradu-
ally.

For each peer, we define an overloaded valve Vo. For ex-
ample, assign Vo to 80%. It means, if the workload allocated
on a peer is over 80% of its capacity, the response time for the
requests will increase significantly, and this peer is considered
as overloaded. The load redistribution operation has to be exe-
cuted. We also define another safe valve Vs. For example, Vs

is 50%. When we conduct the load redistribution, the goal is to
make workloads on all the participating peers under Vs of their
capacities to guarantee none of them will again get overloaded
very soon.

Figure 4 shows the load redistribution algorithm. Assume
the peer K is overloaded. It will start a load redistribution op-
eration. It contacts its immediate successor L1 and predeces-
sor J1. Assume, their corresponding workloads are WK , WL1

,
and WJ1

, respectively. The aggregated capacity of these three
peers AC = CK + CL1

+ CJ1
. If the sum of workloads on

K, L1, and J1 is larger than Vs ∗ AC, then more peers have
to be involved. Peer L1 will contact its successor L2, and peer
J1 will contact its predecessor J2. If the aggregated workload
AC = CK + CL1

+ CJ1
+ CL2

+ CJ2
is still above Vs ∗AC,

more peers will be contacted. If the sum of the workloads is
less than Vs ∗AC, the load redistribution operation will be con-
ducted on the set of current peers. The workload within these
zones will be rearranged according to peers’ capabilities and the
future file access tendencies. A variance of the algorithm is, in
each round, instead of adding a successor and a predecessor, we
may include only one of them. Then, we can reduce the amount
or introduced overhead. However, the basic ideas for these two
schemes are the same.

Figure 5 shows an example. Before the peer K leaves,
the zones owned by the peers P0, K, P1 and P2 are
(n1,t1],(t1,t2],(t2,t3] and (t3,n2], respectively. After K left, P1 is
overloaded, the load redistribution operation has to be enforced.
After the operation finishes, the zones owned by peers P0, P1
and P2 become (n1,t1’],(t1’,t3’] and (t3’,n2], respectively. Such
a distribution is based on the capacities of P0, P2 and P3 as well
as the file access history information within (n1,n2].

IV. TOPOLOGICAL-AWARE FILE REPLICATION

Besides the above mechanisms, we can further improve the
load balancing performance in DHT system by making copies



K is the peer which is overloaded, it owns the zone (n1, n2]
CK is the capacity of Peer K
WK is the current workload on K
Vo is the overloaded valve
Vs is the safety valve
Function LOAD REDISTRIBUTION(K)
{

if (WK < Vo ∗ CK)
return

L1 = successor(K)
J1 = predecessor(K)
W = WK + WL1

+ WJ1

L = L1

n2 = the upper bound of the zone Peer L1 owns
J = J1

n1 = the lower bound of the zone Peer J1 owns
AC = CK + CL1

+ CJ1

while (W > Vs ∗ AC)
{

L = successor(L)
n2 = the upper bound of the zone L owns
J = predecessor(J)
n1 = the lower bound of the zone J owns
W = W + WL + WJ

AC = AC + CL + CJ

}
Find all the files a1,a2,...,ae within (n1,n2]
x = 1
N = J
while (N <= L)
{

s = 0
W ′

N = CN∑
L

i=J
Ci

W

while (s < W ′

N )
{

s = s + FxOx

x = x + 1
}
t’ = random(fileid(x), fileid(x+1))
Migrate files to N
Move file access history to N
N = successor(N)
}

}

Fig. 4. Workload Redistribution Algorithm

a) Before K leaves
n1 n2

KP0 P1 P2

t1 t2 t3

P0

n1 n2

P1 P2

t1’ t3’
b) After K leaves

Fig. 5. A Sample of Load Redistribution

(Peerid, Order Information)Fileid

118

119 172:202

120

121 015:011 223:121

223:121 197:220 037:001

Fig. 6. A Modified History Table on Peer 121:012

of popular files on multiple peers. Previous DHT systems also
use this strategy to enhance the data availability. However, in
our approach, we take the peers’ network topological character-
istics into account. We make the copies of a file on the peers
topologically adjacent to the group of peers which are likely to
access this file in the future. Thus, we can achieve better load
balancing, reduce the user perceived latency and the network
bandwidth consumption. We use file access history information
to make the data replication decisions. In this section, we first
introduce the technique to discover peers’ topological informa-
tion, and then we describe the modified history table, finally we
present the new data replication mechanism.

A. Distributed Binning Scheme
To create topologically-aware data replication schema, the

first question we should answer is how to represent and main-
tain the network topology information. For example, how to
discover the topologically close peers for a given peer? Clearly,
we need some mechanisms which can represent the topological
location information of the peers. A simple method for this pur-
pose is the distributed binning scheme proposed by Ratnasamy
and Shenker [19].The detailed information about the distributed
binning scheme can be seen in [19].

We use the landmark node ordering information as part of the
peer identification information. For example, Peer 121:012 rep-
resents the peer with the peerid 121. Three landmark nodes (L1,
L2 and L3) are used, and the link latencies from peer 121 to L1,
L2 and L3 are within [0,20), [20,100) and greater than 100ms,
respectively. The peers who have the same or similar ordering
information are topologically close. For example, Peer 121:012
is topological closer to Peer 206:012 than Peer 124:202, which
means the link latency to the Peer 206:012 is much smaller than
to the Peer 124:202.

B. Modified File Access History Table and Topology Ta-
ble

We modify the structure of the file access history table to in-
clude the order information. Figure 6 shows the sample table
on Peer 121:012. In this table, every entry contains three com-
ponents: the peerid, the order information of that peer, and the
access time. Again, the last item is omitted.

We create another hash table (Topology Table) to represent
the aggregated number of accesses coming from peers with the
same order information. A sample table is shown in Figure 7.
For each entry in the table, it contains two components, the first
item is the order information, and the second one is the number
of file accesses in the past recording period. For an entry with
the value (t,n), it represents, that in the past counting period,
there’s n accesses to the file came from the peers which have the
common order information t. For example, look at the first entry



Fileid (Order Information, Number of Accesses)

011 8 1

118

119

120

121 121

20121 220 12 122 1

202 1

Fig. 7. A sample Topology Table on peer 121:012

for the file 118, in the past period, there are 20 accesses came
from the peers with the order information 121, but only 1 access
came from the peers with the order information 122.

C. File Replication Mechanism
We propose a new file replication mechanism to further

improve the load balancing performance by making multiple
copies of hot files on different locations. Here, the modified
history table is used. For each entry in this table, the order in-
formation indicates the topological information of the peer who
requested this file. We can detect if a file is very hot or not
by checking the records in the topology table, and find out the
most common order information which have the largest num-
ber of requests. Then, we search the records in the history table
and choose some peers who have that common order informa-
tion. These are the peers topologically adjacent to the group of
peers that have the highest requests. We predict more request
will come from this group in the future. A copy of the file can
be created on one of those peers. Next time, if a new request for
this file comes from a peer in this group (it can be detected from
its order information), the client who initialize this request will
be notified the location of the replica, and it can retrieve the file
from a neighbor peer directly. With this strategy, we can greatly
reduce the user access latency and decrease the Internet band-
width consumption. For example, as shown in Figure 7, there
are 20 accesses came from the peers with the order information
“121”. We can choose one of these peers and create a replica
of file “118” on it. In the future, if another peer with the same
order information requests this file, it can be redirected to the
neighbor peer who has the copy.

To choose an adequate peer to store a copy, first, the peer P
who is in charge of this popular file has to contact those peers
by sending a message. The peers being selected reply with their
estimated workload (using the file access history information),
the peer R who has the lowest workload will be chosen to store
a copy of that file. A direct link to that replica is created on peer
P. Next time, if P observes a new request from a peer T which is
topologically close to peer R, T will be informed and the request
will be forwarded to R.

Such a strategy is still coarse, it does not exploit the full topo-
logical information. For example, peer “105:012” is in charge
of a file F. F has a copy on peer “123:221”. If a new request
comes from peer “047:220”, should we forward the request to
“123:221”? A mechanism which can find the topological dis-
tance between peers with different order information is needed.
One possible solution is to create some “super order informa-
tion”. They can be used to combine several order information
together when making the file replication decision. For exam-
ple, in Figure 7, peers with the order information 120, 121 and
122 can be combined to form a super order information “12X”.

Assume a copy of a file is stored on a peer with the order in-
formation 120, if a new request comes from a peer with order
information “121”, we should forward this request, because it
has the same super order information with the peer who has a
copy.

V. PERFORMANCE STUDY

In this section, we evaluate the performance of our load bal-
ancing algorithm and compare it with previous solutions. First,
We describe the simulation environment we use in our experi-
ments, then we present the simulation results.

A. Experimental Environment
In our simulations, we choose GT-ITM Transit-Stub (TS

model) as the primary network topology model. TS is an in-
ternetwork topology model proposed by E. Zegura in [20]. In
our simulation, the delays of intra-transit domain links, stub-
transit links and intra-stub domain links are set to 100, 20 and
5ms respectively (We also use other distributions but the ten-
dency does not change). In all the experiments, the number of
peers in simulated network is 5000.

We use the web proxy logs obtained from the National Lab-
oratory for Applied Network Research (NLANR) as the work-
load. The trace data we use are collected from eight individual
servers between April 30, 2003 and May 6, 2003. We vary the
number of files in the system from 20K to 100K.

Four different load balancing strategies are compared: 1)
NLB: this is the basic DHT system, with no load balancing
strategy enforced. 2) VSNM: Using virtual servers, but server
migration is not allowed; 3) VSM: Using virtual servers, and
the server migration is used to dynamically balance the load; 4)
HLB: This is our new algorithm: historical information based
load balancing. The performance metric we use is the standard-
ized Load/Capacity ratio. For each experiment, we calculate the
average Load/Capacity ratio and normalize it as 1.0.

B. Load Balancing
Our first set of experiments evaluates the load balancing per-

formance. Figure 8 shows the 75-percentile distribution of the
aggregated workload/Capacity ratio for all the algorithms. The
result can be used to represent the workload variances on the
peers. The smaller the difference, the better the load balanc-
ing performance. From the figure, we can draw the conclusion
that HLB algorithm outperforms all the other three mechanisms.
The variance in HLB is the smallest, and it is about 65% less
than NLB and VSNM, and around 25% superior over VSM. It
is not exceptional that NLB has the worst performance. But sur-
prisingly, VSNM can not achieve good performance either. This
is because VSNM uses a static workload allocation mechanism,
it does not consider workload characters, and virtual servers can
not migrate if a peer is overloaded. Compare to NLB, not too
much benefits we can get by using virtual servers. For VSM,
since it dynamically redistributes the workloads, it can achieve
better performance than NLB and VSNM. But it is still worse
than HLB because of the lack of the consideration of the histor-
ical information.

From Figure 8, we can also observe that, as we increase the
number of files in the system, for all the algorithms, the variance
becomes larger. This is because file accesses are highly skewed,
introducing more files will result in more imbalanced distribu-
tion of files, and exacerbate the existing problems. However,
HLB is the best. The reason is, with the more files, we have



NLB

0

0.5

1

1.5

2

20 40 60 80 100

Number of files (X1000)

Sta
nd

ard
ize

d L
oa

d/C
ap

ac
ity

VSNM

0

0.5

1

1.5

2

20 40 60 80 100

Number of files (X1000)

Sta
nd

ard
ize

d L
oa

d/C
ap

ac
ity

VSM

0

0.5

1

1.5

2

20 40 60 80 100

Number of files (X1000)

Sta
nd

ard
ize

d L
oa

d/C
ap

ac
ity

HLB

0

0.5

1

1.5

2

20 40 60 80 100

Number of files (X1000)

Sta
nd

ard
ize

d L
oa

d/C
ap

ac
ity

Fig. 8. 75-Percentile Distribution of Load/Capacity Ratio for Different Algorithms

more file access history information can be used to guide the
load distribution. As the number of files increases from 20K to
100K, the variance in HLB only increases by 10%. For other
algorithms, the variance increase by 19% to 35%. Clearly, pre-
dicting the future file access trend is helpful to achieve the opti-
mal load balancing.

C. Overloaded Peers
In all four algorithms, a peer may got overloaded due to vari-

ous factors, such as the file access behavior, peer heterogeneity,
etc. In this set of experiments, we check the overload proba-
bility. A peer is considered as overloaded, if at a certain time,
the workload assigned to it is above 80% of its capacity. The
experimental result is shown in Table I. As the number of files
in the system increases, more requests are used, and the system
became busier. For all four algorithms, the percentage of over-
loaded peers increases as more files and requests are entered.
For NLB algorithm, even with the smallest set of files (20K),
it still has very bad performance, 7.23% of all peers got over-
loaded at least once. VSNM also have very bad performance,
due to inflexibility to adapt the changed workload distribution.
VSM performs much better than these two algorithms, because
it will dynamically move the virtual servers to reflect the distri-
bution. But the migration of virtual servers is blind, no file pop-
ularity information is considered. Thus it does not achieve the
best performance. HLB has the smallest number of overloaded
peers in all experiments, only 6.91% of all peers is overloaded
with 100K files.

TABLE I
PROBABILITY OF OVERLOADED PEERS COMPARISON

20K 40K 60K 80K 100K
NLB 7.23 10.15 15.37 18.23 21.82

VSNM 7.11 10.78 14.12 16.17 19.22
VSM 4.12 8.27 11.37 13.09 15.24
HLB 0.18 1.27 2.34 4.27 6.91

D. File Replication Performance
Finally, we test the effects of the topological-aware file repli-

cation mechanism. In this experiment, we only make two repli-
cas for a popular file. We calculate the average access latency
for the 100 most popular files. The result is shown in Figure 9.
Since HLB has more information about the peers, a copy can be
created on a peer topologically close to the peers who likely to
access the file. For NLB, VSNM and VSM, no copies are made.
HLB has the best performance in all the cases. We normalize
its access latency as 1. All the other three algorithms have the
worse performance than HLB, but none of them superior than

1

1.2

1.4

1.6

1.8

20 40 60 80 100

Number of files (X1000)

No
rm

aliz
ed 

Av
era

ge 
Ac

ces
s L

ate
ncy

NLB VSNM
VSM HLB

Fig. 9. File Replication Effects

other two. In our experiment, even if we create another copy for
each file in NLB, VSNM and VSM, they have no clue which
peer should be used to keep a copy. We did not see any perfor-
mance advantages. Clearly, lack of the topologically informa-
tion restrains the system ability to improve the load balancing
performance.

VI. RELATED WORKS

A bunch of research papers [12], [13], [14] proposed dy-
namic load balancing algorithms to relieve the load imbalance
in Chord. In all these approaches, virtual servers are used,
and the peer heterogeneity is well considered to achieve a bet-
ter address-space distribution. System dynamically monitors
the workload distribution, and moves virtual servers from over-
loaded peers to light-loaded peers. However, the usage of virtual
servers greatly increases the amount of routing metadata needed
on each peer and causes more maintenance overhead. Further-
more, peers’ topological characters are not taken into account.

On the other hand, even with the perfect address-space as-
signment, which means the sum of segments on all peers are
proportional to their capabilities, the above systems may still
not be able to achieve the optimal load balancing. This is due to
the highly skewed file access behaviors. The fileid of a hot file
may fall into a zone owned by a weak peer, and it is not capable
to deal with the high demands for this file. It is also very likely
that many files which are seldom used fall in a zone owned by
a powerful peer. The computer resources on the powerful peer
are wasted. The system workload is imbalanced, and the perfor-
mance is limited.

In [21], Byers et al. proposed a simple “the power of two”
load balancing strategy. In their approach, multiple hash func-
tions are used to generate the fileids. In case a new file is in-
serted, it will be given multiple identifiers, the file will be stored
on the peer who is the least loaded. Such a strategy is simple
and efficient. However, it has two drawbacks: first, it increases
the computational overhead for routing requests, since multiple
hash functions have to be computed each time; Second, it is a



static allocation, and does not change in case the workload dis-
tribution shifts.

In [22], [23], the topological information was used to re-
duce the routing latency as well as the user retrieving overhead.
However, load balancing issue is not considered. In this paper,
we adopt this idea, and use topological information to improve
DHT system load balancing performance.

None of the above systems considered the file access frequen-
cies, and failed to predict the tendency of the future user access
behavior. To the best of our knowledge, our paper is the first to
utilize this information to improve load balancing performance
in DHT system.

VII. CONCLUSIONS

In this paper, we present a novel and efficient load balanc-
ing schema for DHT-based P2P systems. We analyze the issue
carefully, and figure out that the load balancing performance in
DHT systems is highly affected by system properties such as
the peer heterogeneity, file access behaviors, and P2P overlay
network topology. In our solution, all these issues are well con-
sidered to generate better load balance decisions. Firstly, we
create an efficient mechanism to maintain the file access history
information, and use this information to predict the future file
access behaviors. Secondly, by utilizing this information, we
can more accurately split the workload when a new peer joins
the system; Thirdly, by utilizing this information, we also cre-
ate better load redistribution decisions by modifying the sizes
of zones. In our algorithm, the load redistribution is only per-
formed when it is necessary, the induced overhead problem is
minimized. Fourthly, topological characteristics of peers are
used to assist the file replication operations. Files are copied on
the peers adjacent to the groups of peers which have high proba-
bilities to access these files in the future. With this strategy, load
can be well balanced on multiple peers, the user perceived re-
trieving overhead is reduced, and the bandwidth consumption is
decreased as well. Finally, no virtual servers are used in our al-
gorithm, we avoid the additional routing metadata maintenance
overhead.

VIII. ACKNOWLEDGEMENT

This research has been supported by NSF Grant CNS-
0509207 and a research grant from Intel Corporation.

REFERENCES

[1] Napster, “http://www.napster.com.”
[2] Gnutella, “http://www.gnutella.wego.com.”
[3] KaZaA, “http://www.kazaa.com/.”
[4] BitTorrent, “http://www.bittorrent.com/.”
[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,

“A scalable content addressable network.” Technical Report, TR-
00-010, U.C.Berkeley, CA, 2000.

[6] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer sys-
tems,” in Proceedings of the 18th IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware), (Heidel-
berg, Germany), pp. 329–350, Nov. 2001.

[7] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable peer-to-peer lookup service for internet
applications.” Technical Report TR-819, MIT., Mar. 2001.

[8] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastruc-
ture for fault-tolerant widearea location and routing.” Technical
Report UCB/CSD-01-1141, U.C.Berkeley, CA, 2001.

[9] V. King and J. Saia, “Choosing a random peer,” in Principles
of Distributed Computing(PODC), (Newfoundland, Canada), July
2004.

[10] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A measurement
study of peer-to-peer file sharing systems,” in Proceedings of Mul-
timedia Computing and Networking (MMCN), San Jones, CA, Jan.
2002.

[11] J. Chu, K. Labonte, and B. N. Levine, “Availability and Locality
Measurements of Peer-to-Peer File Systems,” in Proceedings of
ITCom: Scalability and Traffic Control in IP Networks II Confer-
ences, July 2002.

[12] B. Godfrey, K. Lakshminarayanan, S. Surana, R. M. Karp, and
I. Stoica, “Load balancing in dynamic structured p2p systems.,” in
Proceedings of IEEE INFOCOM, 2004.

[13] J. Ledlie and M. Seltzer, “Distributed, secure load balancing with
skew, heterogeneity, and churn,” in Proceedings of IEEE INFO-
COM, 2004.

[14] A. Rao, K. Lakshminarayanan, S. Surana, R. M. Karp, and I. Sto-
ica, “Load balancing in structured p2p systems.,” in Proceed-
ings of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS), Berkeley, CA, pp. 68–79, 2003.

[15] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
a scalable wide-area web cache sharing protocol,” IEEE/ACM
Transactions on Networking, vol. 8, no. 3, pp. 281–293, 2000.

[16] A. Rousskov and D. Wessels, “Cache Digest,” in the 3th Inter-
national WWW Caching Workshop, (Manchester, England), June
1998.

[17] D. G. Thaler and C. V. Ravishankar, “Using Name-Based Map-
pings to Increase Hit Rates,” IEEE/ACM Transactions on Net-
working, vol. 6, no. 1, pp. 1–14, 1998.

[18] B. Smith and V. Valloppillil, “Personal communications,”
February-June 1997.

[19] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,
“Topologically-Aware Overlay Construction and Server Selec-
tion,” in Proceedings of IEEE INFOCOM’02, (New York, NY),
Jun. 2002.

[20] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model
an internetwork,” in Proceedings of the IEEE Conference on Com-
puter Communication, San Francisco, CA, pp. 594–602, Mar.
1996.

[21] J. W. Byers, J. Considine, and M. Mitzenmacher, “Simple load
balancing for distributed hash tables.,” in Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS), Berke-
ley, CA, pp. 80–87, 2003.

[22] Z. Xu, R. Min, and Y. Hu, “HIERAS: A DHT-Based Hierarchi-
cal Peer-to-Peer Routing Algorithm,” in the Proceedings of the
2003 International Conference on Parallel Processing (ICPP’03),
(Kaohsiung, Taiwan, ROC), October 2003.

[23] Z. Xu, X. He, and L. Bhuyan, “Efficient File Sharing Strategy in
DHT-based P2P Systems,” in Proceedings of the 24th IEEE Inter-
national Performance, Computing, and Communications Confer-
ence(IPCCC’05), (Phoenix, AZ), April 2005.


